ADVERTISEMENT
site_logo
  • Campus
  • Happening
  • Opinion
  • People
  • News
  • #BeInspired
  • Careers
  • 40 under 40
  • Exams
  • What The FAQ
  • Videos
    • Straight Up
    • Odisha Literary Festival 2020
    • Campus Convo
    • Careers After Corona
    • Express Expressions
    • Q&A With Prabhu Chawla
    • ThinkEdu Awards 2020
  • edex_worksEDEXWORKS
ADVERTISEMENT
IIT Mandi

Published: 25th January 2021     

IIT Mandi proposes sampling techniques for accurate insights in real-world high dimensional datasets

To address these challenges, the researchers have come up with simple techniques for two fundamental unsupervised learning tasks -- Clustering and Dimensionality Reduction

Edex Live
Edex Live
f_icon t_icon i_icon l_icon koo_icon whatsapp_icon email_icon

Share Via Email

North_Campus_of_IIT_Mandi

North Campus of IIT Mandi

A researcher at the Indian Institute of Technology (IIT) Mandi has proposed sampling techniques to accurately provide insight into the real world high dimensional datasets.

Rameshwar Pratap, Assistant Professor at IIT Mandi in collaboration with Microsoft Research India, Bengaluru, and Carnegie Mellon University, Pittsburgh, USA, has proposed simple, efficient, and accurate sampling techniques to provide insight in the real world high dimensional datasets.

According to Pratap, recent technological advancements in the world have generated a large volume of high dimensional datasets from various sources such as Internet of Things (IoT), World Wide Web, bioinformatics, finance, social network, smart home appliances, smart cities and 5G communication media, among others.

"These high dimensional datasets need to be carefully analysed to infer interesting insights that can be useful for making important decisions," Pratap said.

"Typically several algorithmic techniques such as clustering, regression, and classification are used to analyse Big data. However one of the major challenges in the real-world datasets is that they consist of outliers or anomalies which potentially can confuse these algorithms, and consequently can lead to incorrect insights," he said.

To address these challenges, the researchers have come up with simple techniques for two fundamental unsupervised learning tasks -- Clustering and Dimensionality Reduction.

"As both clustering and principal component analysis are fundamental subroutines in many artificial intelligence applications such as text, audio, video and image compression, building scalable recommendation systems, faster duplicate detection, scalable indexing for faster search, and many more, our results can potentially get accurate and scalable solutions in all of these applications, even when the data is noisy," he said.

READ ALSO: IIT Mandi researchers propose technique to enhance power output of piezoelectric materials

In clustering, the research has focused on a famous clustering algorithm 'k-means' clustering.

"In this clustering, the aim is to group the data points into k number of clusters such that points belonging to a particular cluster are more closer to its cluster centre than the remaining. Finding the optimal clustering is hard," he said.

Sharing details of his research, Pratap said in order to address this challenge efficient sampling algorithms have been proposed so that output is close to the optimal solution -- approximate representative of each cluster centre.

"However, the presence of outliers can confuse the sampling algorithm that in turn may output a solution which is very far from the optimal.

To address this, researchers have proposed a sampling algorithm which can efficiently find a close to optimal clustering solution even when outliers are present in the datasets.

"As the presence of outliers can confuse these sampling algorithms and the resulting solution can be significantly worse, we have proposed efficient and accurate sampling algorithms which find close to optimal principal components even when outliers are present in the datasets," he said.

telegram
TAGS
IIT Mandi

O
P
E
N

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
telegram
ADVERTISEMENT
Write to us!

If you have campus news, views, works of art, photos or just want to reach out to us, just drop us a line.

newsletter_icon
Mailbox
edexlive@gmail.com
fb_icon
Facebook
twitter_icon
Twitter
insta_icon
Instagram
ADVERTISEMENT
Facebook
ADVERTISEMENT
Tweets by Xpress_edex
ADVERTISEMENT
ADVERTISEMENT

FOLLOW US

Copyright - edexlive.com 2021

The New Indian Express | Dinamani | Kannada Prabha | Samakalika Malayalam | Indulgexpress | Cinema Express | Event Xpress

Contact Us | About Us | Privacy Policy | Terms of Use | Advertise With Us

Home | Live Now | Live Story | Campus Trip | Coach Calling | Live Take