ADVERTISEMENT
site_logo
  • Campus
  • Happening
  • Opinion
  • People
  • News
  • #BeInspired
  • Careers
  • 40 under 40
  • Exams
  • What The FAQ
  • Videos
    • Straight Up
    • Odisha Literary Festival 2020
    • Campus Convo
    • Careers After Corona
    • Express Expressions
    • Q&A With Prabhu Chawla
    • ThinkEdu Awards 2020
  • Web Stories
  • edex_worksEDEXWORKS
IISc

Published: 11th August 2022     

How researchers at IISc Bangalore are using fish ear bones to estimate seawater temperature 

Because of the close correlation they found between calcium isotope ratios and temperatures, the authors are confident that their approach can now be used on fossilised samples

Edex Live
Edex Live
f_icon t_icon i_icon l_icon koo_icon whatsapp_icon email_icon Google News

Share Via Email

PTIIPHOTOS048_08214737

Picture for representational purpose only | (Pic: PTI)

Who knew that probing tiny bones in the ears of fish will lead to one estimating ancient seawater temperature? This is what has been identified by the researchers at the Indian Institute of Science (IISc) Bangalore.

Our Earth is covered by ocean, three-quarter of it. And these waters play host to known and unknown life forms. Scientists have been trying to reconstruct the seawater temperature over time, but have not been able to do so.

"When you go back in time, you don't have any fossilised seawater," explains Ramananda Chakrabarti, Associate Professor at the Centre for Earth Sciences (CEaS), IISc, and corresponding author of the study published in Chemical Geology, in a press release issued by IISc on Wednesday, August 10.

Therefore, he and his PhD student, Surajit Mondal, in collaboration with Prosenjit Ghosh, Professor at CEaS, turned to 'otoliths' — tiny bones found in the inner ear of fish, stated a report in PTI.

Just like corals, otoliths too are made of calcium carbonate and grow throughout a fish's lifetime by accumulating minerals from seawater.

And just like tree rings, it is these otoliths that hold clues to the fish's age, migration patterns, and the type of water that the fish lived in.

For many years, Chakrabarti and his team have been tracking calcium carbonate deposits found in tiny animals like corals or foraminifera.

In the current study, they chose otoliths as scientists have discovered fossilised otolith samples dating as far back as the Jurassic period (172 million years ago).

Diving deep into the research
The researchers used six present-day otolith samples collected from different geographical locations along the east coast of North America. They analysed the ratio of different calcium isotopes in these otoliths with a Thermal Ionisation Mass Spectrometer (TIMS).

By measuring the ratios of calcium isotopes in the sample, they were able to correlate it with the seawater temperatures from which the fish were collected.

"We demonstrated that calcium isotopes are a powerful tracer of water temperature, and Surajit's efforts make our lab the only lab in the country that can actually measure these isotopic variations," says Chakrabarti.

In addition to calcium isotopes, the team also analysed the concentration of other elements like strontium, magnesium, and barium, and their ratios in the same sample, and collated the data together to tease out a more accurate value for seawater temperature within a range of plus or minus one degree Celsius when compared to the actual value.

Organisms that live in the ocean are extremely sensitive to temperatures. A two-degree temperature rise could lead to the extinction of several species, the release noted.

In addition, because the atmosphere and the ocean are "on talking terms", says Chakrabarti, a lot of the carbon dioxide in the atmosphere eventually dissolves into the ocean, and this ability to dissolve carbon dioxide is also linked to seawater temperature the lower the temperature, the more carbon dioxide is trapped.

Just like a carbonated drink that loses its fizz as it warms up, the ocean loses its ability to hold carbon dioxide as it gets warmer.

Because of the close correlation they found between calcium isotope ratios and temperatures, the authors are confident that their approach can now be used on fossilised samples.

Mapping early seawater temperatures is important to better understand Earth's history, they say.

"What happened back in time," says Chakrabarti, "is key to our understanding of what will happen in the future."
 

telegram
TAGS
IISc Bangalore research study fish ancient seawater temperature

O
P
E
N

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
telegram
ADVERTISEMENT
Write to us!

If you have campus news, views, works of art, photos or just want to reach out to us, just drop us a line.

newsletter_icon
Mailbox
edexlive@gmail.com
fb_icon
Facebook
twitter_icon
Twitter
insta_icon
Instagram
ADVERTISEMENT
Facebook
ADVERTISEMENT
Tweets by Xpress_edex
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT

FOLLOW US

The New Indian Express | The Morning Standard | Dinamani | Kannada Prabha | Samakalika Malayalam | Cinema Express | Indulgexpress | Events Xpress

Contact Us | About Us | Privacy Policy | Terms of Use

Home | Live Now | Live Story | Campus Trip | Coach Calling | Live Take

Copyright - edexlive.com 2023. All rights reserved. Website Designed, Developed & Maintained by Express Network Private Ltd.