ADVERTISEMENT
site_logo
  • Campus
  • Happening
  • Opinion
  • People
  • News
  • #BeInspired
  • Careers
  • 40 under 40
  • Exams
  • What The FAQ
  • Videos
    • Straight Up
    • Odisha Literary Festival 2020
    • Campus Convo
    • Careers After Corona
    • Express Expressions
    • Q&A With Prabhu Chawla
    • ThinkEdu Awards 2020
  • edex_worksEDEXWORKS
ADVERTISEMENT
COVID variant

Published: 26th June 2021     

Spike protein changes in COVID variants can make current vaccines ineffective, says new study

Researchers from the Boston Children's Hospital, have found new properties in the spike protein of the Alpha, first identified in the UK and Beta, first identified in South Africa variants

Edex Live
Edex Live
f_icon t_icon i_icon l_icon koo_icon whatsapp_icon email_icon

Share Via Email

coronavirus-4945950_960_720

Image for representational purpose only |Pic: Pixabay

As SARS-CoV-2, the virus causing COVID-19, evolves it tends to mutate and bring new variants as well as cause changes to the spike protein -- a fact that can render the current vaccines targeting the protein ineffective.

Researchers from the Boston Children's Hospital, have found new properties in the spike protein of the Alpha, first identified in the UK and Beta, first identified in South Africa variants. The changes to the 'spike' protein explains faster spread of Alpha, and how the Beta variant evades immune responses, suggesting the need for a booster with an updated vaccine.

"The mutations make antibodies stimulated by the current vaccine less effective," said Bing Chen, in the division of Molecular Medicine at Boston Children's.

"The Beta variant is somewhat resistant to the current vaccines, and we think a booster with the new genetic sequence can be beneficial for protecting against this variant," Chen added.

Spike proteins, on the surface of SARS CoV-2, are what enable the virus to attach to and enter our cells, and all current vaccines are directed against them. The new study, published in Science, used cryo-electron microscopy (cryo-EM) to compare the spike protein from the original virus with that of the Alpha and Beta variants.

The structural findings indicate that mutations in the Beta variant (also known as B1351) change the shape of the spike surface at certain locations. As a result, neutralising antibodies induced by current vaccines are less able to bind to the Beta virus, which may allow it to evade the immune system even when people are vaccinated.

However, the study also found that mutations in the Beta variant make the spike less effective in binding to ACE2 -- suggesting that this variant is less transmissible than the Alpha variant.

As for the Alpha variant (B117), the study confirms that a genetic change in the spike (a single amino acid substitution) helps the virus bind better to ACE2 receptors, making it more infectious. However, testing indicates that antibodies elicited by existing vaccines can still neutralise this variant.

telegram
TAGS
COVID variant study vaccine SARS CoV-2 COVID-19

O
P
E
N

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
telegram
ADVERTISEMENT
Write to us!

If you have campus news, views, works of art, photos or just want to reach out to us, just drop us a line.

newsletter_icon
Mailbox
edexlive@gmail.com
fb_icon
Facebook
twitter_icon
Twitter
insta_icon
Instagram
ADVERTISEMENT
Facebook
ADVERTISEMENT
Tweets by Xpress_edex
ADVERTISEMENT
ADVERTISEMENT

FOLLOW US

Copyright - edexlive.com 2021

The New Indian Express | Dinamani | Kannada Prabha | Samakalika Malayalam | Indulgexpress | Cinema Express | Event Xpress

Contact Us | About Us | Privacy Policy | Terms of Use | Advertise With Us

Home | Live Now | Live Story | Campus Trip | Coach Calling | Live Take