ADVERTISEMENT
  • Campus
  • Happening
  • Opinion
  • People
  • News
  • #BeInspired
  • Careers
  • 40 under 40
  • Exams
  • What The FAQ
  • Videos
    • Straight Up
    • Odisha Literary Festival 2020
    • Campus Convo
    • Careers After Corona
    • Express Expressions
    • Q&A With Prabhu Chawla
    • ThinkEdu Awards 2020
ADVERTISEMENT
Technology

Published: 24th December 2018     

Scientists use sound waves to acoustically stitch up internal injuries, deliver drugs to target organs

Sound exerts a small acoustic force and by turning up the volume of ultrasonic waves, too high pitched for humans to hear, scientists create a sound field strong enough to move small objects

Edex Live
Edex Live

Share Via Email

sound_waves

Image for representational purpose only

Scientists have successfully used sound waves to levitate and manipulate multiple objects simultaneously for the first time, using the system to "sew" a thread into a piece of fabric.

The system could be used to acoustically stitch up internal injuries or deliver drugs to target organs.

Sound exerts a small acoustic force and by turning up the volume of ultrasonic waves, too high pitched for humans to hear, scientists create a sound field strong enough to move small objects.

Scientists from the University of Bristol in the UK and Universidad Publica De Navarra in Spain attached two millimetric polystyrene spheres to a piece of thread and used the acoustic tweezers to "sew" the thread into a piece of fabric.

The system can also simultaneously control the 3D movement of up to 25 of these spheres in the air.

"Now we have more versatility — multiple pairs of hands to move things and perform complex procedures, it opens up possibilities that just weren't there before," said Professor Bruce Drinkwater at the University of Bristol in the UK.

"We applied a novel algorithm that controls an array of 256 small loudspeakers — and that is what allows us to create the intricate, tweezer-like, acoustic fields," said Asier Marzo, from Universidad Publica De Navarra.

Acoustic tweezers have similar capabilities to optical tweezers, the 2018 Nobel prize winner, which uses lasers to trap and transport micro-particles.

However, acoustic tweezers have the edge over optical systems when it comes to operating within human tissue.

Lasers only travel through transparent media, making them tricky to use for applications within biological tissue.

On the other hand, ultrasound is routinely used in pregnancy scans and kidney stone treatment as it can safely and non-invasively penetrate biological tissue.

Another advantage is that acoustic devices are 100,000 times more power efficient than optical systems.

"Optical tweezers are a fantastic technology, but always dangerously close to killing the cells being moved, with acoustics we're applying the same sort of forces but with way less energy associated.

There are lots of applications that require cellular manipulation and acoustic systems are perfect for them," said Drinkwater.

The team is confident that the same methodology could be adapted to in-water particle manipulation in approximately one year.

They hope that soon after, it could be adapted for use in biological tissue.

"The flexibility of ultrasonic sound waves will allow us to operate at micrometre scales to position cells within 3D printed assemblies or living tissue.

Or on a larger scale, to levitate tangible pixels that form a physical hologram in mid-air," he said.

telegram
TAGS
Technology sound waves

O
P
E
N

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
telegram
ADVERTISEMENT
Write to us!

If you have campus news, views, works of art, photos or just want to reach out to us, just drop us a line.

Mailbox
edexlive@gmail.com
Facebook
Twitter
Instagram
ADVERTISEMENT
Facebook
ADVERTISEMENT
Tweets by Xpress_edex
ADVERTISEMENT
ADVERTISEMENT

FOLLOW US

Copyright - edexlive.com 2021

The New Indian Express | Dinamani | Kannada Prabha | Samakalika Malayalam | Indulgexpress | Cinema Express | Event Xpress

Contact Us | About Us | Privacy Policy | Terms of Use | Advertise With Us

Home | Live Now | Live Story | Campus Trip | Coach Calling | Live Take